

БАРЬЕР ИСКРОЗАЩИТНЫЙ БИА-П75-45К

Руководство по эксплуатации

БИ.00.016-01 РЭ от 20.08.2025

Российская Федерация, 620057, г. Екатеринбург, ул. Шефская, 62. Тел./факс: (343) 379-53-60 (многоканальный).

E-mail: sale@sensor-com.ru www.sensor-com.ru Настоящее руководство РЭ содержит сведения, удостоверяющие гарантированные изготовителем основные технические характеристики искрозащитного барьера БИА-П75-45К. Документ позволяет ознакомиться с устройством изделия и устанавливает правила эксплуатации и обслуживания.

1 ОПИСАНИЕ И РАБОТА

1.1 Назначение и область применения изделия

Барьер искрозащитный БИА-П75-45К предназначен для эксплуатации вне взрывоопасных зон с выходными искробезопасными цепями, предназначенными для подключения взрывозащищенных устройств, устанавливаемых во взрывоопасных зонах.

Область применения - в соответствии с Ех-маркировкой, вне взрывоопасных зон с возможностью подключения искробезопасными выходными цепями к устройствам, установленным во взрывоопасных зонах:

- помещений и наружных установок классов 0, 1 или 2 по ГОСТ IEC 60079-10-1-2013 в которых возможно образование взрывоопасных смесей газов и паров с воздухом категорий IIA, IIB, IIC по ГОСТ 31610.20-1-2016/IEC 60079-20-1:2010:
- помещений и наружных установок классов 20, 21 или 22 по ГОСТ 31610.10-2-2017/IEC 60079-10-2:2015, в которых возможно присутствие взрывоопасных пылевых сред категорий IIIA, IIIB и IIIC по ГОСТ 31610.20-2-2017/ISO/IEC 80079-20-2:2016;
- подземных выработок шахт и их наземных строений, опасных по рудничному газу и (или) горючей пыли.

Искрозащитный барьер БИА-П75-45К служит для подключения во взрывоопасной зоне взрывобезопасных индуктивных датчиков серии ДВИ, производства ЗАО «СЕНСОР» или датчиков других производителей с аналогичными параметрами.

Барьер содержит два независимых канала. Каждый канал включает в себя входную цепь для подключения датчика положения и выходной коммутирующий элемент.

По заказу барьер может поставляться с выходными полупроводниковыми коммутирующими элементами PNP или NPN типа, а также с коммутирующими элементами в виде реле. Вариант выходного коммутирующего элемента указывается с помощью дополнительных знаков, расположенных после обозначения в следующем формате: БИА-П75-45К-хххх-х. Например, барьер с коммутирующими элементами в виде реле: БИА-П75-45К-2173-Н; барьер с выходными полупроводниковыми коммутирующими элементами PNP: БИА-П75-45К-2113-С; барьер с выходными полупроводниковыми коммутирующими элементами NPN: БИА-П75-45К-2123-С.

Барьер снабжен диагностическим коммутирующим элементом в виде реле, которое замыкается при неисправности входной цепи.

1.2 Основные технические характеристики.

Маркировка взрывозащиты	[Ex ia Ma] I [Ex ia Ga] IIC [Ex ia Da] IIIC	
Диапазон напряжений питания в пределах, В DC	15-30	
Пульсации напряжения питания, % не более	10	
Число каналов	2	
Ток потребления, мА не более	200	
Диапазон рабочих температур	от минус 20 до +60	
Напряжение холостого хода, B DC	8,2	
Номинальный ток срабатывания, мА	1,55 ± 5%	
Номинальный ток отпускания, мА	1,75 ± 5%	
Ток срабатывания короткого замыкания, мА не более	9	
Максимальный ток нагрузки выходного полупроводникового коммутирующего элемента, мА не более	500	
Максимальный ток нагрузки выходного релейного коммутирующего элемента, А не более	3	
Максимальное напряжение выходного полупроводникового коммутирующего элемента, В DC не более	40	
Максимальное напряжение выходного релейного коммутирующего элемента, В АС не более	250	
Максимальная частота срабатывания выходного полупроводникового коммутирующего элемента, Гц не более	100	
Максимальная частота срабатывания выходного релейного коммутирующего элемента, Гц не более	5	
Максимальное (аварийное) напряжение на входе барьера, В не более	250	
Степень защиты по ГОСТ 14254-2015	IP20	
Назначенный срок службы, лет не менее	8	
Ресурс выходных реле (для БИА-П75-45K-2173-H), срабатываний	15 000 000	
Ресурс реле «Авария», срабатываний	15 000 000	

Параметры искробезопасной выходной цепи барьера приведены в таблице 1.

Таблица 1 - Параметры искробезопасной выходной цепи барьера

Наименование параметра	Группа	Подгруппа	Подгруппа	Подгруппа	
	I	IIA	IIC	IIB, IIIC	
Максимальное выходное напряжение Uo, В	12,5				
Максимальный выходной ток Іо, мА	17				
Максимальная выходная мощность Ро, мВт	53,2				
Максимальная внешняя ёмкость Со, мкФ	7,7	1,2	28	32,3	
Максимальная внешняя индуктивность Lo,	500	150	900	1000	
мГн	300	150	900	1000	

1.3 Состав изделия

Комплектность изделия приведена в таблице 2.

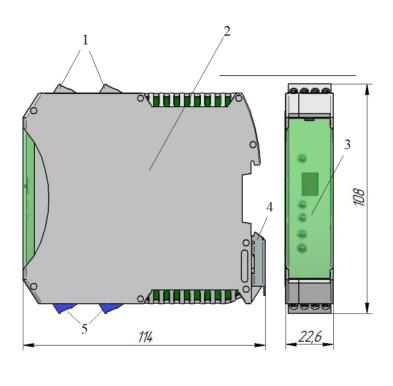
Таблица 2

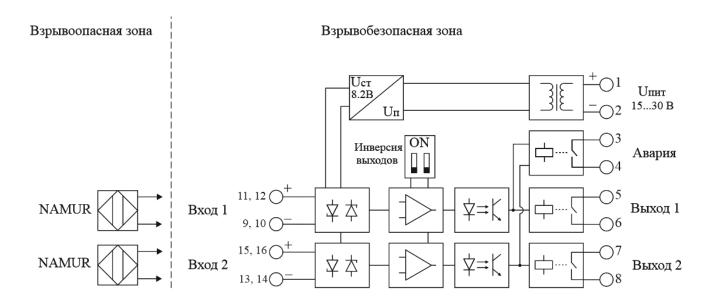
Наименование	Кол-во	Примечание
Барьер искрозащитный БИА-П75-45К-хххх-х	1	
Паспорт	1	
Руководство по эксплуатации		на партию более 20 шт. по требованию заказчика
Коробка	1	
Пакет упаковочный	1	

Доукомплектование дополнительными элементами согласовывается отдельно.

Искрозащитный барьер БИА-П75-45К (рисунок 1) выполнен в типовом пластиковом корпусе для крепления на DIN-рейку.

Барьер состоит из корпуса 2, замка для крепления на DIN-рейку 4, клемм «под винт» 1 для подключения питания, выходных цепей, клемм «под винт» 5 для подключения входных цепей. На передней панели размещены индикаторы 3 питания, рабочего и аварийного режимов.




Рисунок 1 – Внешний вид барьера искрозащитного

1.4 Устройство и работа

Принцип работы искрозащитного барьера заключается в ограничении энергии электрической цепи вводных устройств, находящегося во взрывоопасной зоне, до искробезопасного значения в случае их повреждения.

Функциональная схема барьера БИА-П75-45К приведена на рисунке 2.

Питающее напряжение подается на выводы 1, 2 устройства. Барьер обеспечивает подачу на вводные устройства стабилизированного напряжения 8,2B DC.

Рисунок 2 – Функциональная схема барьера искрозащитного

Датчики, расположенные во взрывоопасной зоне, подключается к выводам 9-12 (канал 1), 13-16 (канал 2) барьера, установленного вне потенциально опасной зоны. При достижении сигналом, поступающего от датчика, уровня, соответствующего установленному току срабатывания, происходит изменение рабочего положения выходного коммутирующего элемента 5-6 или 7-8 (замыкание), соответствующего канала.

Для инвертирования рабочего положения выходного коммутирующего элемента предназначен, DIP-переключатель (рис.3), расположенный на передней панели барьера.

Неинвертированный канал, работает в режиме НО, это значит, что выход данного канала замыкается при появлении объекта воздействия в зоне чувствительности датчика ДВИ. Инвертированный канал, работает в режиме НЗ, это значит, что выход данного канала замыкается, при отсутствии объекта воздействия в зоне чувствительности датчика ДВИ.

Барьер обеспечивает индикацию аварийного режима работы (обрыва или короткого замыкания сигнальной цепи) в каждом канале и замыкание рабочего положения релейного коммутирующего элемента (выводы 3-4) в случае аварийного режима работы в любом из каналов или в обоих каналах сразу.

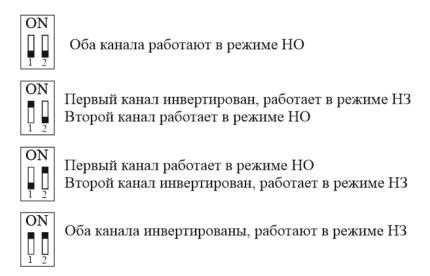


Рисунок 3 – Положения DIP-переключателя, режима работы каналов БИА

1.5 Маркировка

Маркировка искрозащитного барьера соответствует требованиям ГОСТ 31610.0-2019 и ТР ТС 012/2011.

Маркировка содержит:

- Наименование предприятия изготовителя или его товарный знак;
- Обозначение типа оборудования;
- Диапазон температур окружающей среды;
- Порядковый номероборудования по системе нумерации предприятия изготовителя;
- Дата изготовления;
- Маркировка взрывозащиты [Ex ia Ma] I
 [Ex ia Ga] IIC
 [Ex ia Da] IIIC;
- Параметры искробезопасных цепей;
- Номер сертификата соответствияи наименование органа по сертификации;
- Единый знак **EAC** обращения продукциина рынке государств членов Таможенного союза;
- Специальный знак взрывобезопасности **ух** в соответствии с ТР ТС 012/2011;
- Маркировка степени защиты оболочки (IP).

1.6 Упаковка

Индивидуальная упаковка барьера должна соответствовать разработанной конструкторской документации и обеспечивать защиту изделия от воздействия атмосферных факторов во время транспортирования и хранения. Искрозащитный барьер и паспорт на изделие, должны быть помещены в полиэтиленовый пакет. Пакет с изделием должен быть помещен в картонную коробку. Внутри коробки барьер должен быть уплотнен с помощью картонных прокладок.

В качестве транспортной тары должен быть использован ящик картонный, обозначение ТК, исполнение тары по прочности Л-III-2 ГОСТ9396-88. Коробки с барьерами, внутри транспортной тары должны быть уплотнены с помощью картонных прокладок.

При поставке «Руководство по эксплуатации» может быть помещено в герметичный полиэтиленовый пакет и вложено в транспортную тару.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Обеспечение безопасности

По способу защиты человека от поражения электрическим током барьеры относятся к классу III по ГОСТ 12.2.007.0-75.

Эксплуатация барьеров разрешается только при наличии действующей на предприятии инструкции по технике безопасности.

При вводе в эксплуатацию барьеры должны быть подвергнуты внешнему осмотру на соответствие требований к упаковке, изложенным в данном руководстве и отсутствие внешних механических повреждений.

Барьеры с видимыми механическими повреждениями к эксплуатации не допускаются! Обязательному внешнему осмотру должны быть подвергнуты, подключаемые через барьер устройства, находящиеся во взрывоопасной зоне.

2.2 Обеспечение взрывозащищенности

Взрывозащищенность барьера обеспечивается выполнением его конструкции в соответствии с общими требованиями по ГОСТ 31610.0-2019 (IEC 60079-0:2017) и видом взрывозащиты «искробезопасная электрическая цепь «i» по ГОСТ 31610.11-2014 (IEC 60079-11:2011), имеют маркировку взрывозащиты [Ex ia Ma] I, [Ex ia Ga] IIC/IIB, [Ex ia Da] IIIC и предназначены для установки вне взрывоопасных зон.

2.3 Обеспечение взрывозащищенности при монтаже, эксплуатации и ремонте ВНИМАНИЕ! Использование барьера во взрывоопасной зоне строго запрещается.

При использовании барьера с датчиками других производителей необходимо убедиться в наличии сертификата «взрывобезопасности» этих устройств и соответствия их маркировки условиям эксплуатации.

В зависимости от места установки, эксплуатация изделия должна производиться с соблюдением требований: действующих нормативных документов.

Перед использованием необходимо провести проверку работоспособности изделия согласно п.п. 3.2 настоящего руководства. Проверку, монтаж и эксплуатацию барьеров на объекте должны осуществлять лица, имеющие квалификационную группу по электробезопасности не ниже III, квалификацию электромонтера не ниже 4 разряда.

При установке барьера должен быть обеспечен удобный доступ к коммутирующим элементам барьера и индикации режимов работы.

Подключение питающего напряжения и вводных устройств должно быть осуществлено согласно маркировке и схеме, приведенной на рисунке 2.

Барьер не допускается устанавливать в непосредственной близости от электрооборудования, способного вызывать различного рода помехи.

Соединение барьера с вводным устройством, находящимся во взрывоопасной зоне, должно быть осуществлено с использованием «витой пары», с сечением жилы не менее 0,35 мм2.

Барьеры имеют неразборную конструкцию и подлежат ремонту и настройке в гарантийный период исключительно в условиях предприятия-изготовителя.

2.4 Использование изделия

При соблюдении условий эксплуатации барьер обеспечивает непрерывный круглосуточный режим работы.

Барьер предназначен для эксплуатации в нерегулярно отапливаемых помещениях в интервале рабочих температур от минус 20 до +60°C при отсутствии конденсации влаги и агрессивных сред.

2.5 Критический отказ изделия

Критическим отказом считается повреждение БИА и потеря его работоспособности. К возможным ошибкам персонала (пользователя), приводящим к аварийным режимам работы барьера, относятся:

- 1) неправильное подключение барьера;
- 2) неправильная установка барьера по месту эксплуатации;
- 3) превышение напряжения питания значений указанных в основных технических характеристиках
 - 4) подключение к БИА изделий, не отвечающих предельным искробезопасным параметрам
 - 5) механические повреждения
 - К параметрам, определяющим предельное состояние БИА, относятся:
 - 1) критический отказ;
 - 2) выработка ресурса реле БИА.

БИА может быть отремонтирован только заводом изготовителем. При обнаружении предельного состояния, БИА должен быть заменён, эксплуатация не допускается.

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

3.1 Общие указания

При эксплуатации барьера следует руководствоваться настоящим руководством, «Правилами устройства электроустановок» и другими нормативными документами, действующими в данной отрасли промышленности.

В эксплуатации необходимо осуществлять периодический визуальный осмотр барьеров для контроля индикации питающего напряжения и аварийных режимов работы, внешних искробезопасных цепей.

3.2 Проверка работоспособности

Проверку работоспособности проводят в нормальных условиях: окружающая температура $(+20\pm5)$ °C, относительная влажность (60 ± 15) %, атмосферное давление 101.3 ± 4 кПа $(760\pm30$ мм рт. ст.).

Барьер БИА-П75-45К подключается к приборам в соответствии со схемой, приведенной на рисунке 4. Контакты 5, 6, 7, 8 барьеров БИА-П75-45К-2113-С и БИА-П75-45К-2123-С подключаются к цепи питания через измеритель тока и резистор, а остальные контакты подключаются аналогично БИА-П75-45К-2173-Н.

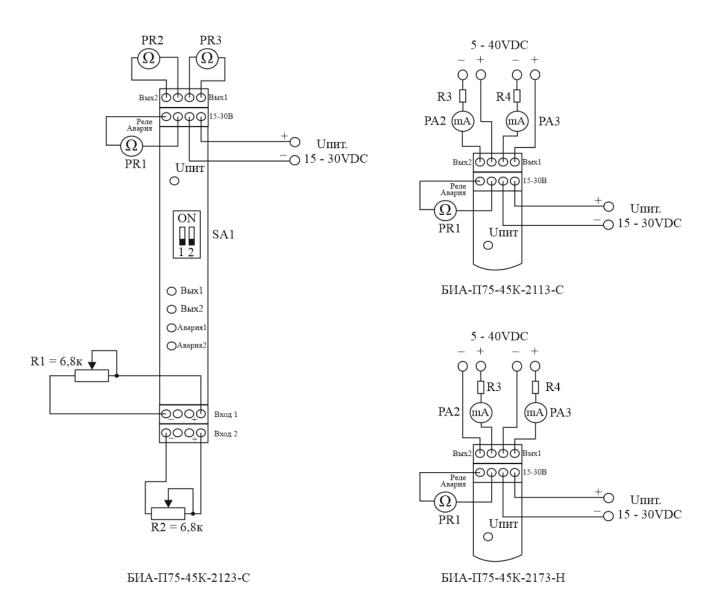


Рисунок 4 — Схема проверки работоспособности БИА PR1...3 — омметры; R1,R2 — переменные резисторы; R3,R4 — резистор 1кОм; PA2,PA3 - амперметры

Входной сигнал задается изменением сопротивлений R1, R2, а состояние выходных коммутирующих элементов определяется с помощью омметров или миллиамперметров. Замкнутое состояние соответствует низкому сопротивлению цепи PR или протеканию тока через резисторы R3, R4.

Для проверки работоспособности следует установить движки переменных резисторов в среднее положение и включить источник питания. Увеличивая сопротивление потенциометров R1 и R2 добиться срабатывания выходных каналов. Уменьшая сопротивление потенциометров R1 и R2 добиться выключения выходных каналов. При дальнейшем уменьшении сопротивления потенциометров R1 и R2 должен включиться аварийный режим и сработать «реле Авария».

При переключении движков SA1 DIP-переключателя в верхнее положение, выходные каналы должны работать инверсно (при уменьшении сопротивления потенциометров выходные каналы – включаются, при увеличении отключаются).

4 ХРАНЕНИЕ

Условия хранения изделия соответствуют требованиям ГОСТ 23216-78 для категорий 1 по ГОСТ 15150-69.

Срок хранения не более 3 лет. Консервация изделия не предусмотрена.

Переосвидетельствование состояния, замена отдельных элементов, деталей, узлов у изделия с истекшим сроком хранения не предусмотрено.

5 ТРАНСПОРТИРОВАНИЕ

Условия транспортирования "Легкие" (Л) по ГОСТ 23216-78.

Барьеры транспортируют в упаковке предприятия – изготовителя в закреплённом состоянии всеми видами крытых транспортных средств, кроме не отапливаемых отсеков самолетов, без ограничения расстояния в соответствии с действующими на данном транспорте правилами, утверждёнными в установленном порядке.

После транспортирования барьеров в условиях отрицательных температур, они должны быть выдержаны перед распаковкой в нормальных климатических условиях в течении 4 часов.

6 ОСОБЫЕ УСЛОВИЯ ПРИМЕНЕНИЯ

Максимальные значения соответствующих параметров внешних электрических цепей, с учетом параметров соединительного кабеля, должны соответствовать выходным параметрам барьера.